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Abstract By pammetrizing the t-j model we present a new electron correlation model with 
one free parameter. In one dimension, this model is of Sci,(llZ) symmeuy. The energy spectra 
are shown to be modulated by the free panmeter in the model. The solution and symmetric 
structures of the Hiibed space, as well as the Bethe ansatz approach, are discussed for special 
cases. 

Strongly correlated electronic systems are believed to be important in studying the 
phenomenon of high-temperature superconductivity [l, 21. An appropriate starting model 
suggested by Anderson is the t-j model [3,4]. The model describes the behaviour of 
electrons on a discrete lattice with a Hamiltonian including nearest-neighbour hopping ( t )  
and antiferromagnetic exchange ( j ) .  Also, the Hilbert space admits no double occupancy 
of any single site. As the two-dimensional systems may share features of one-dimensional 
systems [5], the t- j  model in one dimension has been,investigated extensively. The model 
is shown to be integrable and supersymmetric when j = 12t [6,7]. Nevertheless, the 
phenomenon of high-temperature superconductivity depends greatly on detailed material. 
While in the supersymmetric t - j  model there are no non-trivial free parameters left By 
taking into account some physical considerations, we present in this paper a generalized 
t- j  model. The main point of interest is that this model degenerates into an integrable one 
 with a free parameter q and q-deformed supersymmehic symmetry. 

Electrons on a lattice are described by canonical Fermi operators CA and cj,, satisfying 
anti-commutation relations given by 

(1) 
where U = t, J; j = ~ l ,  . . . , L and L is the total number of lattice sites. ciu annihilates an 
electron of spin U at site i. The Fock vacuum 10) satisfies cirrlO) = 0. As double occupancy 
is not allowed, there are three possible electronic states at a given lattice site i: 

[C+ 1 0 . 9  c .  ,U .) = s j j s , ,  

IO) I+) = C$O) = It) I-) = C,+,lO) = 1.1). 
The Hamiltonian of the supersymmetric t-j model on a lattice of L sites is given by 

the following expression: 
L-1 

Hrj = [x+-xi;: + x;+xi+;; - x;0x;i1 + X;-x$ - xyx;:, + x;+xzi 
i=l 

+ni + +  nt+, + n;ni,! - n y ~ y + ~ ]  
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where 

xi"B=la)ii(BI LY,B=O,+ . -  (3 ) 

np = lo)ii(ol n: = l+)ii(+l n; = I-). I L  .(-I (4) 

are the local generators of the supersymmetric algebra SU( 112) and 

are the number operators of holes, spin-up electrons and spin-down electrons at site i, 
respectively. It can be proved directly that H,j commutes with the total operators of SU(112) 
on the lattice., 

In parametrizing the usual supersymmetric t - j  Hamiltonian ( Z ) ,  we can reasonably 
distinguish the interactions between spin-up (-down) electrons and between holes. Therefore 
the coupling constants of n'nL, and nfn;,, are different to that of npnp+I. 

We also suppose that the chemical potentials of spin-up (-down) electrons and holes are 
different. The terms for chemical potential are then of the form 

L 

= cn; + c' (nt  + n;) (5 )  
i=I 

where c and c' are chemical potentials of a hole and an electron, respectively. Accounting 
for the no-double-occupancy condition, 

np+nt+n;=1 (6) 
the chemical potential simply becomes 

modular a constant term. 
JJI addition, we consider the nearest-neighbour interactions between electrons with 

opposed spin direction. For an electron c$ located at site j, the general form of the 
interaction is n~- ln ;+n~n~+l ,  where n takes t and 5 takes .1 and vice versa. If we impose 
the saturation condition on it, the interaction only contributes one term to the Hamiltonian. 
Without loss of generality, we can assume that the interaction between opposed direction 
spin electrons is 

which may be, in a sense, considered as the first-order expansion of the Cooper pair in 
coordinate space. In the following, we will see that this term plays an important role in 
resumption of the symmetry of the system. 

Based on the above analysis and accounting for suitable boundary conditions, we present 
a modified t - j  Hamiltonian with parameters 

H = 
L-1 

[XT-XG:  + X;'X;; - X;'X;i1 + Xp-X:' 1 + 1  - X*Xo+ i+l + X i  O+ ',+I * t 
i=l 

+bn;nL, + y(n'nL, + n;n,,) + 8nfn:+l + rnp] (9) 
where A ,  y ,  8, T are free parameters. This Hamiltonian no longer possesses the SU(112) 
symmetry and is not integrable in general. To recover the broken symmehy in some 
contents we note that the generators X:', a, j3 = 0, +, - in (3) are also the trivial 
representations of the q-deformed algebra SUq( 112). Therefore a reasonable candidate for 
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symmetry imposed on the system is SU,(2). Before studying the symmetry of the system, 
we give some preliminary knowledge of SUq(112). This algebra is spanned by generators 
Xd ,U, j3 = +, -, 0. They satisfy the following algebraic relations: 

[x+-, x-t] = [X++ - x--1, 
[X++, x+-] = x+- 
[X++, x-+] = -x-+ 
[x-, x-+] = x-+ 
[x--, x+-] = -x+- 
[X", Xo+]= xo+ 
[X", X+O] = -x+o 
(x-o)2 = 0 

(x+-)2x-o - ( q + q-')x+-x-"+- + x-o(x+-)I = 0 
(x-+)zxo- - (q +q-')X-+xO-x-+ + xo-(x-+)* = 0 

[x-o, XO-]= [x-- + X"], 
[X++, X+O] = x+o 
[X++, XO+] = ;xo+ 
[r-, x-01 = x-0 

[x--, xo-] = -xo- 
[X". XO-]= xo- 
[X", x-01 = -x-0 
(X0-y = 0 

(10) 

and the Sierre relations 

(11) 

where 
qx - q-x 

[XI, = - q-' . 
As a quantum algebra, SUq(112) has non-trivial Hopf algebraic structures with 

operations co-product, co-unit and antipode. Here we only give the co-product expressions: 

A(X") = XLLa 8 1 + 1 8  XuL" 
A(X- ) - 4 

01 = +, -,,o 
+ - x-+ @ (x++-X--)/z + g-(x*-x--'/z x-+ 

= x-+ 8 11 + ( q i  - I)X++ + (q-i - l)x--} 
+(I  + (q-i - 1)X++ + (qi - 1)x--J 8 x-+ 

@ x+- A(X+-) = X+- 8 q (X++-X--)/Z + q-(x++-x--)/2 

- - x+- 8 [1+ (qi - 1)X++ + ( q - f L  l)x--} 
+(I + (q-i - l)X++ + (qi - l)x--) 8 x+- 

0- - xo-8q (P+x--)/z + q-(XM+X--)/Z @ xo- 

= xo- 8 [I + (qi  - l)(x-- + XW)] 
+(1 + (q-i - l)(x-- + X")) 8 xo- 

A(X 1- 

0 - x-o A(X- ) - 4 (xM+X--)/z + q-'Xw+X--)/z @ x-o 

+( 1 + (q-i - l)(x-- + XW)} 8 x - 0  

(X+++XW)/2 + -(X+++X"2 @ x-+ A(XO+) = X o + ~ @  q 4 
-(x++-x--)/2xo- * q(X--+X"/zX-+ +(q - 9-94 

t [ 1 +  (q-i  - l)(Xf+ t XW)1 8 xof t (q - q-9x0- 8 x-+ 

= x-0 0 11 + (qi - l)(x-- t X")] 

= XO+ @ (1 + (qf - l)(X++ + X")) 
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A(Xto) = X+'@ q (X+++Xm)/2  + q - ( X " + X w  @ x+o 

= X + O @ { l + ( q t  - I ) ( X + + + x W ) }  

-(x++-x--)/Zx-o @ (x--+Xm>/zx+- +(4 - 4-94 4 

+ ( l + ( q - $  - 1 ) ( X + + + X ~ ) l Q X + O + ( q - q - ' ) X - ~ Q X + - .  

The co-product operator A are algebraic isomorphism, A(ab) = A(a)A(b) ,  Va, b E 
Uy(112). Xo+ and X+O are the algebra elements in the sense that 

xto = q t X + - X - o  - q - f X - o X - +  (13) 

Their co-product representations A(X+O) and A(Xo+) are obtained by the actions of the 
co-product operator A.  It is not difficult to show that operators defined by (12) satisfy the 
same relations (10) as X @ .  

Now we return to study what conditions will be imposed on the parameters appearing 
in the Hamiltonian (9), when the system enjoys the symmetry of quantum group SUy(l12). 
Define 

XO' = q- tXo-X-+ - qfX-+XO- 

where HI  = X++ - X-- and HZ = X w  + X--. The operator Xo+ (X+') can also be 
represented in terms of X-+  and Xo-  ( X + -  and X 4 ) .  These operators satisfy the SUy(l12) 
algebraic relations (10). 

It is easy to show that the bosonic operators Xmu commute with the Hamiltonian (9) 
for arbitrary parameters 1, y ,  0 and T. Therefore we only need to calculate 

112 +4'12y)x;-x+- 

+(p - q+ + q'/21)Xi+-X,Z + ( -4 ' /2+ 4- 112 Y )  j x+-x- -  ,+I 

J+1 
j=1 

Then the following conditions are necessary for [X+-, HI = 0: 

-1 y = q  h = q - q ~ .  



Generalized t - j  model 3719 

Similarly, the vanishing condition for commutator [A?+, U ]  = 0 imposes the conditions 
T = I  and8 = -y .  Taking I = T = q-q-' and y = -8 = q in(9) wegetaparametrized 
Hamiltonian with q-deformed symmetry SU,(I 12), 

H; = 
L-1 

[XT-X;? + Xc'X;; - X;'X:J1 + X:-X;ol - X;"X:=, + X : ' X ~ l  
i=l 

+q(n+nG, + n;nGl - nPnP+,) + (q - q-')(n;nL1 + n:)] . (18) 

The calculations to check that the other operators commutes with ff; are tedious but direct, 
Therefore the modified t - j  Hamiltonian (18) is of SU,(llZ) symmetry. It has a free 
parameter q. In order to investigate the meaning of parameter q,  we rewrite the Hamiltonian 
in term of creation and annihilation operators of electrons: 

It is clear that q describes the anisotropic electron spin interaction and the electron chemical 
potential. But the q-dependence of electron chemical potential is superficial. This stems 
from the fact that the eigenstates of H; are also the eigenstates of H; + /IC n;, but only 
with different eigenvalues. So q reveals only the spin interaction. We point out here that 
the new system is SUq(112) symmetry broken. Now we consider the classical limit of H? 

14 (q --t 1). It is easy to show the Hamiltonian degenerates into the usual supersymmetric t-j 
model (t  = 1, j = 2). Besides, when the system satisfies the half-filling condition (ni = l), 
we can get a submodel which enjoys SUq(2) symmetry-Hxz, ferromagnetic model with 
fixed boundary terms. 

This generalized t-j model is again integrable. Similarly to the case of supersymmetric 
t - j  model [6], it can be exactly solved in terms of the algebraic Bethe ansatz. The symmetry 
algebra is now SUq(lj2). Moreover, the usual coordinate Bethe ansatz also gives complete 
energy spectra and eigenstates of the generalized model by using the symmetry algebra 
operators. The detailed exact solutions and the phase diagram analysis are to appear in 
another paper [lo]. In this paper we calculate the model at a few lattice sites, so as to show 
the symmetric structures of the Hilbert space and the roles played by the free parameter q. 

First we consider the case L = 2. The Hamiltonian is simply 

H = X+- Q X-+ + X-+ @ ~ X + -  - X-O Q Xo-  + xo- Q x-0 - x+o Q P + xw Q x+o 
(20) 

By l01p) we denote 101) @I Ip )  for 01, p = +. -,O. The ferromagnetic states Ytf = It?) 
and Y$$ = I&$) are eigenstates of H with energy q. The two-hole state Ym = 100) is 
also an eigenstate with energy -4- l .  For the configuration of one spin-up electron and 
one spin-down electron, the state is of the form Yti  = alt&) +bl&p), where a and b are 
constants. The Schrodinger equation 

+q(n+ Q n+ + n- Q a- - no o no) + (q - q-')(n-  8 n+ +no Q 1). 

HPtj = EY (21) 



3120 Shao-Ming Fei and Rui-Hong Yue 

gives two solutions of E ,  El = q, E X  = -q-' with eigenstates 

*.l$ =~qlJ.t) +It+) 
q$ = I.1.f) - 41t.1) 

respectively. 
For the configuration with a hole and a spin-up electron we have 

Y& = d o t )  + I f O )  
Y& = lot) - 41t0) 

with energy El and Ez,  respectively. 
The one spin-down electron and one-hole case also gives two eigenstates 

%$ = 410$) + 1.10) 
%$ = 10.1) - 41.10) 

with respect to energy E1 and E?. 
Therefore there are 9 (= 3' =. 3') independent states. According to the tensor 

decomposition of the SU,(llZ) algebra representation space, there are two invariant 
spaces. The eigenstates in the same invariant space can be exchanged by using the co- 
product operators of the algebra. One of the invariant subspaces is constituted of states 
Y+T, 'Pic, Y,$. Y& and YIIJJ with energy q. They satisfy the following exchange 
diagram: 

c 

A(X-") 

The left four states give rise to another invariant eigenstate space of energy -q-', 
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+qlJ.tO) +q2ltOL) - ItOJ.) +q l tJ .O)  e = IJ.tf) -9ltJt) + It&?) -qlt tJ)  
Q; = 1J.J.P) -qlJt&) + IJtJ) -qltJ.J) 
\U: = -lot&) + I40t) + IS tO)  - ItW. 

From the above calculations of finite lattices it is obvious that the energy spectra vary 
with the parameter q. For L = 3 the energy gap between ground and first excited states is 
changed from 1 to q + q-' - 1, and when q is taken to be negative, some energy levels are 
reversed. 

For arbitrary lattice sites we consider the configuration 
L 

Y& = C o l ( x ) l t . . . t ~ - I S x t ~ * l . . . t )  . 
X=l 

The Schrodinger equation gives rise to 

This equation set can be solved using the usual Bethe ansatz 

a ( x )  =~A(k)$ - A(-k)e-*'. 

Substituting (31) into the first equation of (30) one can get eigenvalues of the Hamiltonian 

E =  (L-33)q+(q--q-')+zcosk. (32) 
Other equations in (30) give the ratio of the amplitude A(k) and A(-k) 

A(k) 1 - -- - 
A(-k) I - q P  

and 
A(k)  (e-'k - q-l)e-iXL -= 

A(-k) (e'k - q-1)eikL 

(33) 

(34) 

These two equations must be compatible, which gives a constraint on the impulse k, 

e2Lk = 1 . (35) 
Therefore 

(36) 
1X k = -  
L 

1 = 0.1, ..., 2L - 1 

and 

~ ( k )  = I - q e+ . (37) 
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Now we analyse the spectrum in this special case. First, we note that k = 0 and 
k = ir should be ruled out since they give a vanishing Bethe ansatz function. Second, one 
can divide the possible impulses k into two parts, I: ( n / L ,  2 n / L ,  . . . , ( L  - I ) n / L )  and 
II: (n + x / L ,  n: + 27r/L,.  . . ,2rr - T I L ) .  By redefining ij = 2ir - ki, ki E II, one can 
show that they give the same Bethe wavefunctions as kj E I .  Therefore, we have only 
L - 1 possible impulses and L - 1 independent wavevectors. On the other hand, for the 
configuration with L - 1 spin-up and one spin-down electrons, there exist L independent 
states, while the Bethe ansatz gives only L - 1 states. The missing state can be compensated 
for by using the SL',(1(2) algebra operator X-+ acting on the all-spin-up state. This state 
has the same eigenenergy as the all-spin-up state because X-' and H$ are commutative. 

From this simple special case, we see that the Bethe ansatz equation can give all of the 
energy spectrum, but not~the complete states. This had been pointed out in other integrable 
models [S, 91. It is worth noting that the Bethe ansatz states are the highest-weight states 
on which the symmetric group acting gives all complete states. For other configurations, 
this conclusion is also true. 

For the configuration with one hole and L - 1 spin-up electrons, we can similarly write 
down the wavefunction, 

and 

x 2Jr . ( L - I ) x  
L' L ' " .(  L 

k = -  - (42) 

These give L -  1 independent states. The missing state can be obtained by using the operator 
Xo+ acting on the ferromagnetic states. 

One can again see that the symmetry of the system helps in making up the missing 
states in Bethe ansatz approach. Hence investigating the symmetry of integrable system is 
not an artificial technique. It is the basis in studying the completeness of the Hilbert space 
of the system and discussing related physical properties. For detailed Bethe ansatz solutions 
of this generalized t-j model see [IO]. 
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